Functional principal component analysis of fMRI data.
نویسندگان
چکیده
We describe a principal component analysis (PCA) method for functional magnetic resonance imaging (fMRI) data based on functional data analysis, an advanced nonparametric approach. The data delivered by the fMRI scans are viewed as continuous functions of time sampled at the interscan interval and subject to observational noise, and are used accordingly to estimate an image in which smooth functions replace the voxels. The techniques of functional data analysis are used to carry out PCA directly on these functions. We show that functional PCA is more effective than is its ordinary counterpart in recovering the signal of interest, even if limited or no prior knowledge of the form of hemodynamic function or the structure of the experimental design is specified. We discuss the rationale and advantages of the proposed approach relative to other exploratory methods, such as clustering or independent component analysis, as well as the differences from methods based on expanded design matrices.
منابع مشابه
Feature selection using genetic algorithm for classification of schizophrenia using fMRI data
In this paper we propose a new method for classification of subjects into schizophrenia and control groups using functional magnetic resonance imaging (fMRI) data. In the preprocessing step, the number of fMRI time points is reduced using principal component analysis (PCA). Then, independent component analysis (ICA) is used for further data analysis. It estimates independent components (ICs) of...
متن کاملImproving the Performance of ICA Algorithm for fMRI Simulated Data Analysis Using Temporal and Spatial Filters in the Preprocessing Phase
Introduction: The accuracy of analyzing Functional MRI (fMRI) data is usually decreases in the presence of noise and artifact sources. A common solution in for analyzing fMRI data having high noise is to use suitable preprocessing methods with the aim of data denoising. Some effects of preprocessing methods on the parametric methods such as general linear model (GLM) have previously been evalua...
متن کاملIdentification of mild cognitive impairment disease using brain functional connectivity and graph analysis in fMRI data
Background: Early diagnosis of patients in the early stages of Alzheimer's, known as mild cognitive impairment, is of great importance in the treatment of this disease. If a patient can be diagnosed at this stage, it is possible to treat or delay Alzheimer's disease. Resting-state functional magnetic resonance imaging (fMRI) is very common in the process of diagnosing Alzheimer's disease. In th...
متن کاملAnalysis of Functional Magnetic Resonance Imaging Time Series by Independent Component Analysis Dissertation zur Erlangung des akademischen Grades
Functional magnetic resonance imaging (fMRI) gained a lot of interest in medical and human research in the last years. FMRI is a noninvasive method used to study human brain functions by localizing activated brain areas. There are a lot of interesting questions in neurobiology, one of these is the processing of learning-related processes in the human brain and how these processes can be describ...
متن کاملDimension reduction for individual ica to decompose FMRI during real-world experiences: principal component analysis vs. canonical correlation analysis
Group independent component analysis (ICA) with special assumptions is often used for analyzing functional magnetic resonance imaging (fMRI) data. Before ICA, dimension reduction is applied to separate signal and noise subspaces. For analyzing noisy fMRI data of individual participants in free-listening to naturalistic and long music, we applied individual ICA and therefore avoided the assumpti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Human brain mapping
دوره 24 2 شماره
صفحات -
تاریخ انتشار 2005